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An infinitary treatment of temporal logic
Bahareh Afshari

1st February 2019

Abstract
We explore the proof theory of fixed point modal logic with converse modalities, commonly

known as ‘full mu-calculus’. Building on nested sequent calculi for tense logics [2] and
infinitary proof theory of fixed point logics [1], a cut-free sound and complete proof system
for full mu-calculus is proposed. As a corollary of our framework, we also obtain a direct
proof of the regular model property for the logic [4]: every satisfiable formula has a tree
model with finitely many distinct subtrees. To obtain this result we appeal to the basic
theory of well-quasi-orderings in the spirit of Kozen’s proof of the finite model property for
µ-calculus [3].
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Circular (Yet Sound) Proofs

Albert Atserias
Universitat Politècnica de Catalunya

atserias@lsi.upc.edu

We introduce a new way of composing proofs in rule-based proof systems
that generalizes tree-like and dag-like proofs. In the new definition, proofs are
directed graphs of derived formulas, in which cycles are allowed as long as every
formula is derived at least as many times as it is required as a premise. We
call such proofs circular and we show that, for all sets of standard inference
rules, circular proofs are sound. We first focus on the circular version of Res-
olution, and we immediately see that it is stronger than Resolution since, as
we show, the pigeonhole principle has circular Resolution proofs of polynomial
size. Surprisingly, as proof systems for deriving clauses from clauses, Circu-
lar Resolution turns out to be equivalent to Sherali-Adams, a proof system for
reasoning through polynomial inequalities that has linear programming at its
base. As corollaries we get: 1) polynomial-time (LP-based) algorithms that find
circular Resolution proofs of constant width, 2) examples that separate circular
from dag-like Resolution, such as the pigeonhole principle and its variants, and
3) exponentially hard cases for circular Resolution. Contrary to the case of
circular resolution, for Frege we show that circular proofs can be converted into
tree-like ones with at most polynomial overhead.
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Finiteness properties of simple types through a

coinductive lambda-calculus

Ralph Matthes
CNRS, Institut de Recherche en Informatique de Toulouse

ralph.matthes@irit.fr

Proofs in propositional logic correspond to lambda-terms with simple types.
The search for proofs of a given formula/type corresponds to the search for
lambda-terms of that type. Finite successful runs of the search correspond to
the construction of inhabitants of that type, but proof search is more than the
set of its successful outcomes.

In joint work with José Esṕırito Santo and Lúıs Pinto – the whole talk is
about joint work with them – we developed a representation of the search space
for locally correct applications of the proof rules, not limiting the representation
to the construction of (finite) inhabitants. The data structure we propose is an
extension of lambda-calculus (restricted to long normal forms) to a coinductive
structure that also allows to express choice points in the search process. The
elements of that structure are called forests, and individual inductive or even
coinductive lambda-terms can be seen as members of such a forest.

The forests form a coinductive datatype and are therefore not necessarily
finitely described objects. The finitary counterpart to forests is a lambda-
calculus with inductively defined terms (called finitary forests) that also has
the means of expressing choice points and that comes with a formal fixed-point
operator, based on fixed-point variables that are typed with sequents.

The methodology suggested by these structures is to specify proof search
problems through forests and by solving them effectively through finitary forests.

In particular, we used this to reprove decidability of inhabitation and type
finiteness (i. e., the property of having only finitely many inhabitants), but also
the prediction of at most one inhabitant or type finiteness based on the absence
of two atom occurrences at negative resp. positive position in the formula.

We now come to as of now unreleased material. Type finiteness “naturally”
means having only finitely many inhabitants. But, as soon as one grants the
status of “member” of a formula A to any member of the forest canonically
generated from search for proofs of A, other natural concepts of finiteness are
possible. One is the finiteness of any member of A. This concept may be related
to the finiteness of the whole search space, hence a third concept of finiteness,
in the spirit of König’s lemma. Our main new result is that all these concepts
of finiteness are decidable, and so is the property of absence of members (finite
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or otherwise), which is an extreme form of unprovability.
The interesting technical observation here is that all three finiteness concepts

are instances of a generic finiteness predicate with a set parameter, and their
decidability is seen by a single proof for that predicate.

Time permitting, we will also discuss “pruning” of the search space generated
from a formula, where all failed runs are chopped off. Our final result, which
we dub König’s lemma for simple types, says that finiteness of all members of
a formula is equivalent to finiteness of the pruned search space generated from
the formula.
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Provability and consistency of circuit lower

bounds

Moritz Mueller
Universitat Politècnica de Catalunya
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In 1995 Razborov asked for the right fragment of bounded arithmetic cap-
turing existing techniques to prove circuit lower bounds for explicit Boolean
functions. The talk reports some new developments.
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Systems for constructive reverse mathematics

Takako Nemoto

In the reverse mathematics over classical logic, most of the results are given on subsystems
of Z2, whose language is for natural numbers and sets of them, besides the works on higher
order reverse mathematics such as [8] and reverse recursion theory such as [4].

In the reverse mathematics over intuitionistic logic has not yet had fixed language and
systems. Here are some examples:

• Unformalized reverse mathematics: They do not use any formal systems and aim-
ing to classify mathematical theorems by the equivalence over Bishop style constructive
mathematics [3]. ([2], [5], etc..)

• Reverse mathematics with function based language: They use the language for
natural numbers and functions over them. Depending on the treatment of function
symbols, there are many variants. ([1], [6], [9], [11], etc..)

• Reverse mathematics with higher order arithmetic: They use the language for
higher order arithmetic. ([7], etc..)

• Reverse mathematics with first order arithmetic: They use the language for
first order arithmetic. ([10], etc..)

In this talk, we consider the relationship among many systems for constructive reverse math-
ematics from interpretability and conservativity. We also consider the relationship with
systems over classical logic.
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Ramsey-like theorems and moduli of computation

Ludovic Patey
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Ramsey’s theorem asserts that every k-coloring of [ω]n admits an infinite
monochromatic set. Whenever n ≥ 3, there exists a computable k-coloring of
[ω]n whose solutions compute the halting set. On the other hand, for every
computable k-coloring of [ω]2 and every non-computable set C, there is an
infinite monochromatic set H such that C 6≤T H. The latter property is known
as cone avoidance.

In this talk, we provide a short survey on the known results about the
nature of computation of Ramsey’s theorem, and generalize them to a natural
class of Ramsey-like theorems encompassing many statements studied in reverse
mathematics. We show that this class admits a maximal statement satisfying
cone avoidance and use it as a criterion to re-obtain many existing proofs of cone
avoidance. This maximal statement asserts the existence, for every k-coloring
of [ω]n, of an infinite subdomain H ⊆ ω over which the coloring depends only
on the sparsity of its elements. This confirms the intuition that Ramsey-like
theorems compute Turing degrees only through the sparsity of their solutions.
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A Formal Analysis of Timing Channel Security

via Bucketing

Tachio Terauchi
Waseda University

terauchi@waseda.jp

This paper investigates the effect of bucketing in security against timing
channel attacks. Bucketing is a technique proposed to mitigate timing channel
attacks by restricting a system’s outputs to only occur at designated time inter-
vals, and has the effect of reducing the possible timing channel observations to
a small number of possibilities. However, there is little formal analysis on when
and to what degree bucketing is effective against timing channel attacks. In
this paper, we show that bucketing is in general insufficient to ensure security.
Then, we present two conditions that can be used to ensure security of sys-
tems against adaptive timing channel attacks. The first is a general condition
that ensures that the security of a system decreases only by a limited degree
by allowing timing-channel observations, whereas he second condition ensures
that the system would satisfy the first condition when bucketing is applied and
hence becomes secure against timing-channel attacks. Further, we show that
the bucketing technique can be applied compositionally in conjunction with the
constant-time-implementation technique to increase their applicability. While
we instantiate our contributions to timing channel and bucketing, many of the
results are actually quite general and are applicable to any side channels and
techniques that reduce the number of possible observations on the channel.
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Extracting the Fan Functional ∗

Ulrich Berger
Computer Science department

Swansea University

Consider a continuous functional F : (N→ B)→ N where N is the type of natural
numbers and B is the type of Booleans, both endowed with the discrete topology, and
the function space N→ B carries the pointwise topology. By a compactness argument
(Koenig’s Lemma or Fan Theorem), F is uniformly continuous. Therefore, there exists
a least modulus of uniform continuity for F , that is, a least natural number m such
that F equates any two arguments that coincide below m. The mapping F 7→ m is
called Fan Functional. Gandy showed that the Fan Functional is computable. Later
it was shown that it is computable even in the restricted sense of Kleene’s schemata
(S1-S9), or, equivalently, PCF. We show that the Fan Functional is the computational
content of a constructive proof of the uniform continuity of F . The proof takes place in a
constructive theory with strictly positive inductive and coinductive definitions extended
by an operator !A whose realizability semantics signifies that A holds for trivial reasons
and therefore is realized by any object of the right type. In our application this capures
the fact that a continuous functional of type 2 does not inspects its argument beyond
the point of continuity.

Regarding the constructive logical theory and its realizability interpretation this is
joint work with Hideki Tsuiki.

∗This work was supported by IRSES Nr. 612638 CORCON and Nr. 294962 COMPUTAL of the EC,
the JSPS Core-to-Core Program, A. Advanced research Networks and JSPS KAKENHI 15K00015 as
well as the Marie Curie RISE project CID (H2020-MSCA-RISE-2016-731143).
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Second-order arithmetic, comprehension scheme

and bar recursion

Valentin Blot
IRIF, CNRS, Université Paris-Diderot

LSV, Inria, CNRS, École Normale Supérieure Paris-Saclay

Abstract
In 1962, Spector extended Gödel’s Dialectica interpretation of arith-

metic with an operator of bar recursion providing computational content
for the axiom of countable choice in classical logic. In 1971, Girard defined
a very different, impredicative interpretation of second-order arithmetic
using polymorphic lambda-calculus (system F). Even though the corre-
spondence between the two logical systems is well known, no computa-
tional correspondence has been found so far.

We take a first step towards such a correspondence and define a com-
putational interpretation of second-order arithmetic presented as an ex-
tension of first-order arithmetic with the axiom scheme of comprehension.
We interpret the latter through bar recursion and obtain a simply-typed
interpretation of second-order arithmetic.

In 1962, Spector defined bar recursion [6] to interpret the axiom of countable
choice in the setting of Gödel’s Dialectica interpretation [4]. Much later, Berardi,
Bezem and Coquand defined a similar (but stronger) operator to interpret the
axioms of countable and dependent choice [1] in the setting of Kreisel’s modified
realizability[5].

These interpretations provide computational content for proofs in second-
order arithmetic through a combination of a well-known logical translation of
second-order arithmetic into first-order arithmetic with countable choice and
the interpretation of countable choice by bar recursion.

We make this combination computational and define a direct interpretation
of second-order arithmetic by Berardi-Bezem-Coquand’s version of bar recur-
sion. We discuss the computational meaning of the bar recursive interpretation
of the axiom scheme of comprehension that combines the backtracking interpre-
tation of the excluded middle with the construction of a choice sequence by bar
recursion.

As an application, we define a translation of Girard’s polymorphic lambda
calculus (system F [3]) into simply-typed lambda-calculus with bar recursion.
For each term of system F there exists a proof of its termination in second-order
arithmetic. Applying our interpretation to such a proof gives the translation in
simply-typed lambda-calculus with bar recursion of the term of system F.

This presentation is based on previously published work [2].
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Abstract—This work formalizes Exact Real Computation
(ERC): a paradigm combining (i) algebraic imperative
programming of/over abstract data types (ADTs) for con-
tinuous structures with (ii) a selection and sound semantics
of primitives computable in the sense of Recursive Analysis,
that is, by means of approximations — yet presented to
the user as exact.

We specify a small imperative programming language
for the ADT of real (i.e., including transcendental) num-
bers with rigorous semantics: arguments are provided,
passed to and received from calls to functions (like ex), and
operated on exactly — with partial inequality predicate
and multivalued binary select and continuous condi-
tional (aka parallel if ) operations — yet realizing a function
(again like ex) requires only to approximate its return
value up to guaranteed absolute error 2p for any given
p P Z: closure under composition is implicit. We prove
this language Turing-complete: a partial real function is
computable in the sense of Recursive Analysis iff it can
be expressed in ERC; and similarly for functionals.

Three simple numerical problems demonstrate both the
convenience and novel control-flow considerations of this
approach to Reliable Numerics: (I) multivalued integer
rounding, (II) solving systems of linear equations, and (III)
simple root finding. For rigorously specifying and arguing
about such non-extensional computations, we propose a
two-sorted structure over integers and reals, and prove its
first-order theory both decidable and ‘model complete’:
thus reflecting the elegance inherent to real (as opposed to
rational/floating point) numbers. Rules of Hoare Logic are
extended to support formal correctness proofs in ERC.

I. MOTIVATION, INTRODUCTION, OVERVIEW

Based on Logic, the Theory of Computation provides
fundamental concepts and tools devised to achieve and
assert correctness, thus enabling modern modular soft-
ware engineering — for problems over discrete struc-
tures: Common continuous realms (like real numbers)
arising in Numerics arguably lack behind regarding rig-
orous treatment [1, p.412]. Best (?) practice commonly
resorts to heuristics and ‘recipes’ [2] with vague spec-

ification [3, e04bbc], focussing on legacy encodings
[4] which taint the elegance that made Mathematics
move from rational to real numbers in the first place.
Although often successful in practice, numerical codes
may be flawed with sometimes dramatic consequences
[5]–[7]. Recursive Analysis offers a sound algorithmic
foundation to reliable computation on real numbers,
functions, compact Euclidean subsets, and more general
spaces [8], [9]:

Call x P R computable if some Turing machine
can, for every p P Z, print the numerator ap P
Z of dyadic rational ap2p approximating x up
to error 2p.

This notion has pleasant properties, such as closure under
arithmetic as well as many transcendental functions [10,
§4]. Moreover it leads to a Computational Complexity
Theory [11] whose predictions [12] agree with the per-
formance of practical implementations in reliable numer-
ics [13]. Only, the underlying Turing machine model is
inconvenient to code in [14]. The algebraic model [15],
[16] aka realRAM or Blum-Shub-Smale Machine on the
other hand is intuitive and prevalent in Computational
Geometry, but neglects the influence of internal precision
on the cost of operations, and its test for equality exhibits
superrecursive power [17]. Indeed, “Do not test for
equality!” is like the first commandment of Numerics
whose rounding errors tend to taint mathematical equa-
tions. But which real comparisons are permitted, then?
Strict inequality “x ą 0” would allow to express equality
via the Boolean combination “ px ą 0q^ p´x ą 0q”.

The present work proposes and develops Exact Real
Computation (ERC), a paradigm reconciling and com-
bining the best of the two worlds: based on the algebraic
model, but with additional multivalued primitives and a
modified both sound and computable semantics of tests
in the sense of Recursive Analysis.

Paradigm 1: ERC code realizing a real user function



f receives and operates on real arguments x exactly —
yet with partial comparisons, and multivalued logical
select and continuous conditional “b ? x : y” to
achieve total correctness. It may even call some other
real (user or predefined) functions g to receive and use
their return values: again, exactly. However the value
returned by the user’s ERC code for f merely needs to
approximate fpxq: up to guaranteed error 2p for integer
argument p P Z given in addition to real x.

Note that this conception underlies, e.g., Newton’s
Method.

Overview: This is a short version of
arXiv:1608.05787v3: We specify syntax
and axiomatic semantics of a small imperative
programming language for the ADT of real (i.e.,
including transcendental) numbers: with variables of
two basic types — integer and real numbers — and with
one-dimensional fixed-length arrays over each; with
partial real comparison predicate, multivalued binary
select, and continuous conditional (aka parallel-if );
with WHILE loops and (real and multivalued integer)
functions for subroutine calls. Programming in ERC
regarding multivaluedness and using new/modified
primitives is demonstrated with three numerical
example problems: (I) multivalued integer rounding, (II)
Gaussian Elimination for matrices of given rank, and
(III) finding 1D simple roots. We prove soundness and
adequacy, namely Turing-completeness: a real function
is computable in the sense of Recursive Analysis iff
it can be expressed in ERC; and we extend this to
functionals. We then propose a two-sorted logical
structure for rigorously specifying and arguing about the
behaviour of such non-extensional programs; and show
its first-order theory decidable and ‘model-complete’.
For verifying program correctness formally, we adapt
and extend the classical Floyd-Hoare Logic to this
structure.

Acknowledgements: We thank Andrej Bauer, Cyril Co-
hen, Jeehoon Kang, and Alex Simpson for seminal
discussions, suggestions and feedback. This work was
supported by the International Research & Development
Program of the National Research Foundation of Korea
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NRF-2016K1A3A7A03950702), by the European
Union’s Horizon 2020 MSCA IRSES project 731143,
and by the German Research Foundation (DFG) Grant
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A constructive Coq library for the

mechanization of undecidability
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Abstract

We present a constructive library which contains both entry points and

tools to mechanize undecidability results in Coq's type theory. Among

the entry points are halting problems for Turing machines, binary stack

machines, Minsky machines, decision problems like the Post correspon-

dence problem, or entailments in intuitionistic linear logic. The tools we

use to derive those results are reductions based on simulators, low level

compilers, logical encodings of computational models or embeddings. We

exploit the computability of all functions de�nable in constructive type

theory and thus do not have to rely on a concrete model of computation,

enabling the reduction proofs to focus on correctness properties.

The undecidability of low-level problems like the halting problem is usu-
ally shown by deriving a logical contradiction from the assumption that the
problem is decidable. For even slightly more advanced problems, such a direct
approach becomes infeasible and proofs are instead done by giving a (many-
one) reduction from another undecidable problem to the problem to be shown
undecidable. A proof by reduction in general amounts to de�ning the reduction
function, showing that it is correct as a reduction and giving an argument for
its computability. Most of these proofs rely on subtle details and have to be
checked carefully. They could thus be a prime example for the use of interactive
theorem provers to assist ongoing research. Mechanizations of undecidability
proofs are vary rare in the literature. There are two main obstacles in our eyes:
�rst, proofs on paper mostly omit the invariants needed for the full veri�cation
of the reduction and rather rely on an intuitive justi�cation of the correctness of
the reduction. Second, they omit the actual computability proof, which would
amount to the full formal veri�cation of a program in the chosen model of com-
putation implementing the potentially complex reduction. Both these gaps have
to be closed for the formalisation of reductions in a proof assistant.

Due to its commitment to e�ective methods, constructive type theory can
only represent total computable functions and thus, in the following character-
ization of decidability of a problem P : X → P

decP := ∃f : X →{0, 1},∀x : X,P x↔ f x = 1

the property of f : X→{0, 1} being a total computable function is an unneces-
sary requirement. Within the dependently typed framework of (axiom free) Coq,

1



decidability can equivalently by characterized by the existence of a (dependent)
decider of type:

decP := ∀x : X, {P x}+ {¬P x}

Moving on to the notion of undecidability, the classical approach of character-
izing it as the logical negation of decidability ¬(decP ) would always lead to
an unprovable statement because the (informative) excluded middle formula
∀P : P, {P} + {¬P} is consistent with the type theory. Of course, postulating
such a powerful axiom introduces non-computable functions in the logic.

Contrary to the above negative notion of classical undecidability ¬(decP ),
we propose a positive approach to constructive undecidability, by de�ning it
inductively through two rules:

undec Halt

dec Q→ dec P undec P

undec Q

the �rst rule stating that some seed Halt (e.g. the halting problem for Turing
machines) is undecidable, the second rule stating that undecidability is closed
under the Turing reduction dec Q→ dec P (written P �T Q) which maps a
decider for Q into a decider for P . This de�nition nicely corresponds to the
usual practice in papers establishing undecidability results, where a problem
is almost always related to a previously proved undecidable problem via some
reduction. In practice, the full power of Turing reductions is unnecessary and
reductions occur the sub-class of many-one reductions:

P � Q := ∃f : X → Y,∀x : X, P x↔ Q(f x)

where again, as we work in constructive type theory, the classical requirement
of computability on f can be dropped from the de�nition of P � Q. Using this
approach, we get a potentially incomplete but safe de�nition of the notion of
undecidability which is already enough to mechanize a wide range of results.

Indeed, our library already contains the following computational problems:
single tape Turing machines termination problems, string rewrite systems re-
lated problems, Post correspondence problems (PCP) [1], binary stack machines
termination (with just PUSH and POP instructions), Minsky (or register) ma-
chines (MM) termination (with just INC and DEC instructions), and undecid-
ability results on logical entailment up to that of intuitionistic linear logic [3, 4].
External contributions to our framework already include a reduction from call-
by-value λ-calculus to Halt [5] and a reduction from PCP to the �rst order logic
problems of validity, provability and satis�ability [2]. The latest additions to
our library include reductions from and to µ-recursive algorithm termination [6]
and a reduction from MM to diophantine equations which, combined with the
previous reductions, provides a fully mechanized constructive proof of the neg-
ative answer to Hilbert's 10th problem famously closed by I. Matiassevitch in
the early 70's. The proposed talk is intended to summarize our results recently
published at CPP'19 [4] and present some recent additions including the unde-
cidability of satis�ability for diophantine equations.
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Tiered complexity at higher order

Emmanuel Hainry, Bruce Kapron, Jean-Yves Marion and Romain Péchoux

Extended abstract

In [1], Kapron and Steinberg introduce restrictions on Oracle Turing Ma-
chines to characterize the class of basic feasible functionals (BFF).

The Oracle Turing Machines they consider Mφ are Turing Machines with one
query tape for oracle calls. If a query is written on such a tape and the machine
enters a query-state, then the machine outputs the oracle’s answer on the query
tape in one step.

Definition 1. Given an OTM Mφ and an input a, let m
Mφ
a be the maximum of

the size of the input a and of the biggest oracle’s answer in the run of machine
on input a with oracle φ. A machine Mφ has:

– a polynomial step count if there is a polynomial P such that for any input a

and oracle φ, M runs in time bounded by P (m
Mφ
a ).

– a finite length revision if there exists a natural number n such that for any
oracle and any input, in the run of the machine, the number of times it
happens that an oracle answer is bigger than the input and all of the previous
oracle answers is at most n.

– a finite lookahead revision if there exists a natural number n such that for
any oracle and any input, in the run of the machine, it happens at most n
times that a query is posed whose size exceeds the size of all previous queries.

Definition 2 (Strong and Moderate Poly-Time).

– SPT is the class of second order functions computable by an OTM with a
polynomial step count and finite length revision.

– MPT is the class of second order functions computable by an OTM with a
polynomial step count and finite lookahead revision.

For a given class of functionals X, let λ(X) be the set of simply typed lambda-
terms where a constant symbol is available for each element of X. Let λ(X)2 be
the set of type two functionals represented by type two terms of λ(X).

They obtain the following characterization of BFF:

Theorem 1. λ(MPT)2 = λ(SPT)2 = BFF

The main interest of this characterization is that it does not require the use
of polynomial at order 2 and the semantics restrictions on the OTM are very
natural.

We are now interested in finding a static analysis criterion allowing to ensure
that a program computes a function of BFF . Our target is an implicit compu-
tational complexity characterization of BFF based on Kapron and Steinberg’s
restrictions.
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For that purpose, we consider a simple imperative programming language
with basic operators and oracles:

Expressions e, e1, . . . , en ::= x | op(e1, . . . , ear(op)) | φ(e1 � e2)
Commands c, c1, c2 ::= skip | x := e | c1 ; c2

| if(e){c1} else {c2} | while(e){c}
Programs pφ ::= c return x

We introduce a type system with k tiers (a tier can be viewed as a natural
number) inspired by the type system of [2] that prevents data flows from lower
tiers to higher tiers. Types are triplet of tiers.

Let JSTK be the set of functions computed by terminating and typable pro-
grams.

The main properties ensured by the type system are:

– a standard non-interference property ensuring that computations on higher
tiers do not depend on lower tiers.

– a polynomial step count.
– a finite lookahead revision property.

and consequently, we have a soundness property:

Proposition 1 (JSTK ⊆ MPT). If pφ ∈ ST, then it computes a second order
function over words in MPT.

We also have a stability by lambda-closure property:

Proposition 2. λ(JSTK)2 = JSTK

contrarily to MPT and SPT that are strictly embedded in BFF.
However, completeness is still an open issue (the answer is likely to be nega-

tive for general oracles). For showing completeness, we need to be able to write a
while loop guarded by a time counter containing the polynomial step count. Any
polynomial P can be encoded by a program pφ ∈ ST (on unary data) but it is

unclear whether m
Mφ
a can be computed in this class. Is the function a, φ 7→ m

Mφ
a

in JSTK ? If the answer is negative, the study should be focused on oracles with
the “good” properties. We have at least a static and decidable method (type
inference can be done in polynomial time) for certifying programs to compute
functions in BFF.

.
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Left-Normal Translation
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How to compute normal forms is a fundamental question in term rewriting.
Consider the orthogonal constructor rewrite system:

1: nth(x : xs, 0)→ x 3: from(x)→ x : from(s(x))

2 : nth(x : xs, s(y))→ nth(xs, y) 4 : 0 + x→ x

The term nth(from(0), 0 + s(0)) can be computed as follows:

nth(from(0), 0 + s(0)) → nth(0 : from(s(0)), 0 + s(0))

→ nth(0 : from(s(0)), s(0))→ nth(from(s(0)), 0)

→ nth(s(0) : from(s(0)), 0)→ s(0)

Here underlines indicate rewrite positions. Due to the presence of the non-
terminating subterm from(0), not all rewrite sequences reach the normal form.
For instance, the leftmost outermost strategy, which rewrites subterms at left-
most outermost rewrite positions, yields the infinite sequence:

nth(from(0), 0 + s(0))→ nth(0 : from(s(0)), 0 + s(0))

→ nth(0 : (s(0) : from(s(s(0)))), 0 + s(0))→ · · ·

So the leftmost outermost strategy is not a normalizing strategy for orthogonal
systems in general.

The purpose of this note is to illustrate how the leftmost outermost strategy
can be used for normalizing terms. Our technique is based on two landmark
results in rewriting. One is the Normalization Theorem by O’Donnell [1]. The
theorem says that the leftmost outermost strategy is normalizing for left-normal
orthogonal systems. Left-normality means that in the left-hand side of each rule,
functions symbol precede all variables in prefix notation. While this strategy is
easy to implement, left-normality is a severe restriction. In fact, the first and
second rewrite rules violate the restriction as 0 and s are behind x.

Another is Huet and Lévy’s result on the needed strategy [2]. They showed
that it is a normalizing strategy for all orthogonal systems. This notable gener-
ality comes with the price that it is actually an uncomputable strategy. That is
why the notion of strong sequentiality [3] was introduced. For strongly sequen-
tial orthogonal systems needed positions (i.e. rewrite positions in the needed
strategy) are computable. The above orthogonal system is strongly sequential,



and the first rewrite sequence ending with s(0) is obtained by the needed strat-
egy. Needed positions can be computed in linear time, while its algorithm is
nontrivial.

We present a translation technique, dubbed left-normal translation. Recall
non-left-normal rules 1 and 2 of our running example. Introducing a fresh func-
tion symbol f, we translate them into left-normal forms:

0′ : nth(x : xs, y)→ f(y, x, xs) 3 : from(x)→ x : from(s(x))

1′ : f(0, x, xs)→ x 4: 0 + x→ x

2′ : f(s(y), x, xs)→ nth(xs, y)

Now the system is left-normal, and therefore the Normalization Theorem applies.
Moreover, the leftmost outermost strategy simulates the needed strategy in the
original system:

nth(from(0), 0 + s(0)) → nth(0 : from(s(0)), 0 + s(0))

→ f(0 + s(0), 0, from(s(0)))→ f(s(0), 0, from(s(0)))

→ nth(from(s(0)), 0) → nth(s(0) : from(s(s(0))), 0)

→ f(0, s(0), from(s(0))) → s(0)

The idea behind the translation is to shift potential needed positions (known as
indexes [3]) in rules to leftmost outermost positions. At the MLA 2019 work-
shop we will show that the left-normal translation is applicable to all strongly
sequential, orthogonal constructor systems.
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3. G. Huet and J. J. Lévy. Computations in Orthogonal Term Rewriting Systems, II.
In Computational Logic — Essays in Honor of Alan Robinson, pages 415–443. The
MIT Press, 1991.



Proof nets for first-order additive linear logic
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In this talk we will present canonical proof nets for first-order additive
linear logic, the fragment of linear logic with sum, product, and first-order
universal and existential quantification. The central challenge is to combine
the witnessing information to existential quantifiers with the behaviour of
the additive conjunction. The latter creates multiple ”slices”, each contain-
ing a different version of the same quantifier, with a potentially different
witness.

The challenge is met by upending the traditional evaluation of an ex-
istential quantifier by an immediate substitution: instead, the substitution
is recorded separately, at each axiom link in the proof net. The result is a
canonical notion of proof nets for this logic. The main thrust of the work
resolves the technical consequences of the design. Efficient and intuitive
correctness and sequentialization are given by ”coalescence”, an additive
version of multiplicative contractibility; in essence, this is top-down sequen-
tialization by simple graph rewriting. A main contribution is an intricate
geometric correctness condition, which subtly combines ”slicing” correctness
for propositional additives with ”dependency” correctness for quantification.
Cut-elimination involves the composition of the witnessing substitutions in
two proof nets by ”composition + hiding” in the style of game semantics.

A further contribution is the observation — following recent work by
Dominic Hughes for first-order multiplicative linear logic — that witnessing
information can be omitted from first-order additive proof nets altogether,
and reconstructed via unification. This yields a further, coarser notion of
proof net that factors out any inessential choice in witness assignment.

Details can be found in the technical report [1].
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There is a large body of literature on bar induction principles, on the Fan Theorem, as well as on on their
contrapositives, the Axiom of Dependent Choice and König’s Lemma, as well as on the relations between
them. Our purpose here is to analyse a number of different formulations of these principles in a systematic
way, highlighting dualities, analysing their computational contents, studying the classical, intuitionistic and
linear logic equivalences, as well as integrating the Ultrafilter Theorem into the picture.

Our classification is based on a duality between choice principles (axiom of Dependent Choice, König’s
Lemma, Ultrafilter Theorem) and bar principles (Bar Induction, Fan Theorem). While the choice principles
are thought of as connecting different definitions of existence of infinite paths in trees, the bar principles
are considered as connecting different definitions of well-foundedness of trees. With this idea in mind, we
use the definitions below, which all apply to a predicate T over the set A∗ of finite sequences of elements of
a given domain A. Our focus being purely logical, we do not impose any arithmetical restriction (such as
decidability) on the predicate.

We use the letter a to range over elements of A, the letter u to range over the elements of A∗, n to range
over the natural numbers N and α to range over functions from N to A.

Equivalent concepts on dual predicates
T is a tree T is monotone

∀u ∀a (u ? a ∈ T → u ∈ T ) ∀u ∀a (u ∈ T → u ? a ∈ T )
T is progressing T is hereditary

∀u (u ∈ T → ∃a u ? a ∈ T ) ∀u ((∀a u ? a ∈ T )→ u ∈ T )

Dual concepts on dual predicates
infinite-branch-style well-foundedness-style

Intensional concepts
T has unbounded paths T is uniformly barred

∀n∃u (|u| = n ∧ ∀v (v ≤ u→ v ∈ T )) ∃n∀u (|u| = n→ ∃v (v ≤ u ∧ v ∈ T ))
T is staged infinite1 T is staged barred1

∀n∃u (|u| = n ∧ u ∈ T ) ∃n∀u (|u| = n→ u ∈ T )
T is a spread T is resisting1

〈〉 ∈ T ∧ T progressing T hereditary→ 〈〉 ∈ T
pruning of T adherence1 of T

νX.λu.(u ∈ T ∧ ∃a u ? a ∈ X) µX.λu.(u ∈ T ∨ ∀a u ? a ∈ X)

T is leaking1 or productive1 T is inductively barred
〈〉 ∈ pruning of T 〈〉 ∈ adherence of T

Extensional concepts
T has an infinite branch T is barred

∃α ∀u (u initial segment of α→ u ∈ T ) ∀α ∃u (u initial segment of α ∧ u ∈ T )

For each of the above definitions, we may adopt a classical (i.e. interpreting ∃ classically), intuitionistic
(i.e. interpreting ∃ intuitionistically), or linear reading (i.e. additionally interpreting → as a linear arrow
and conjunction either as a tensor or as a cartesian product). The binders µ and ν define respectively a
smallest and greatest fixpoint.

1Not being aware of an established terminology for this concept, we use here our own terminology.



We take the definition of inductively barred, leaking, having an infinite branch and barred as references
and define:

• Bar Induction (BIA): ∀T ∈ P(A∗) (T barred → T inductively barred)

• Dependent Choice (DCA): ∀T ∈ P(A∗) (T leaking → T has an infinite branch)

Standard formulations of Dependent Choice, e.g. ∀T ∈ P(A∗) (T spread → T has an infinite branch)
can be shown linearly equivalent to the above definition. Standard formulations of the Fan Theorem, e.g.
∀T ∈ P(A∗) (T barred → T uniformly barred), for A finite, can be shown intuitionistically equivalent to
BIA. Standard formulations of König’s Lemma, e.g. ∀T ∈ P(A∗) (T tree ∧ T staged infinite → T has an
infinite branch), for A finite and T decidable, can be shown equivalent to DCA, up to LLPO. In particular,
we rely on the following equivalences between these notions:

• “Leaking” is equivalent to the “existence of a subset which is a spread”.

• “Inductively barred” is equivalent to “all supersets are resisting”.

• On a finite domain and for a decidable predicate, the implication of “leaking” from “having unbounded
paths” is equivalent to LLPO, following [1].

We did not define the property “u initial segment of α” yet. On a binary domain B , {0, 1}, α can be
represented either as a function from N to B, or as a functional relation over N × B, or as a predicate over
N. For instance, in the latter case, “u initial segment of α” would be defined by the following clauses:

〈〉 initial segment of α

u initial segment of α |u| ∈ α

u ? 0 initial segment of α

u initial segment of α |u| 6∈ α

u ? 1 initial segment of α

These three possible different representations of a two-valued function lead to three different forms of the
Fan Theorem on B of increasing strength, where the version for α ∈ N→ B is the strongest and the definition
for α ∈ P(N) the weakest, with some classical reasoning needed to go from α ∈ P(N) to α functional relation
on N×B, and the axiom of unique choice needed to go next to α ∈ N→ B. In particular, the weakest version
is provable in second-order intuitionistic arithmetic, in the same way as Weak König’s Lemma is provable
from ACA0 when formulated using α ∈ P(N) [2].

We will also investigate a generalisation of the Weak Fan Theorem, i.e. of the Fan Theorem on B, to a
dual of the Ultrafilter Theorem, as well as the dual generalisation of Weak König’s Lemma to the Ultrafilter
Theorem. Again, different formulations are possible depending on how an ultrafilter is represented. In
particular, the different formulations of the Weak Fan Theorem will arise as special cases of the corresponding
formulations of the Ultrafilter Theorem on a countable domain.
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Goubault-Larrecq [2] showed that the de Groot duality of stably compact
spaces induces a family of dualities on various powerdomain constructions. For
example, he showed that the dual of the Smyth powerdomain of a stably compact
space X is the Hoare powerdomain of the dual Xd; the dual of the Plotkin
powerdomain of X is the Plotkin powerdomain of Xd; and the same holds for
the probabilistic powerdomain.

In this talk, we give a constructive account of this phenomenon in the setting
of strong proximity lattice, a point-free representation of a stably compact space
due to Jung and Sünderhauf [3]. To this end, we introduce a notion of continuous
entailment relation [4], which can be thought of as a presentation of a strong
proximity lattice by generators and relations. The notion is a variant of an en-
tailment relation with the interpolation property due to Coquand and Zhang [1].
Here, the structure due to Coquand and Zhang is strengthened so that it has an
intrinsic duality which reflects the de Groot duality of stably compact spaces.
With a suitable notion of morphism, the category of continuous entailment rela-
tions becomes equivalent to that of strong proximity lattices. This allows us to
reason about various constructions on strong proximity lattices using generators
and relations.

In particular, the notion of continuous entailment relation allows us to iden-
tify de Groot duals of stably compact spaces presented by generators and rela-
tions by looking at the duals of their presentations. With this observation, we
reproduce the results of Goubault-Larrecq [2] in a purely point-free and con-
structive setting. The examples include lower, upper, and Vietoris powerlocales;
patch topology; and the space of probabilistic valuations. These examples illus-
trate simplicity of our approach by which we can reason about the de Groot
duality of stably compact spaces.
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On randomized polynomial-time approximability
of real numbers and sets

Akitoshi Kawamura Ulysse Léchine

In its simplest form, complexity theory often deals with decision problems. A
decision problem A is specified by a set domA ⊆ {0, 1}∗ of allowable inputs and, for
each u ∈ domA, the correct answer A(u) ∈ {0, 1}. When domA = {0, 1}∗, we say
that A is total1 and write A ∈ total. An algorithm (or a Turing machine, to be formal)
for A is required to work correctly for all inputs in domA. Specifically, we write P
(or BPP, respectively) for the class of decision problems solved by a deterministic (or
randomized, respectively) polynomial-time algorithm in the sense that, given any
input u ∈ domA, it outputs A(u) (with probability ≥ 2/3, respectively)2. These
complexity classes are generally considered to match what can be done efficiently in
the real world. Whether BPP = P, i.e., whether randomness increases the power of
polynomial-time computation, is an important open question in complexity theory.

In the field of computable analysis, the theory of computability and complexity
is applied to problems involving real numbers [1, 3]. In an early paper in this line
of research, Chou and Ko [2] proposed two notions of efficiently computable subsets
of [0; 1]d (the d-dimensional unit cube). A set S ⊆ [0; 1]d is P-recognizable if there is
an algorithm that, given a point x ∈ [0; 1]d (appropriately represented by an oracle)
and n ∈ N, determines in time polynomial in n whether x belongs to S, except when
x is within distance 2−n of the boundary of S. A set S is P-approximable if there
is an algorithm that similarly determines whether x belongs to S, except for x in
a set of measure 2−n. When S is a region enclosed by a simple rectifiable curve, it
can be shown that P-recognizability implies P-approximability. The converse claim
is related to the questions of BPP versus P:

1Some authors say “problems” to mean total problems, and instead call problems in our sense
promise problems, because the algorithm is promised that the input belongs to domA.

2There are other classes defined by randomized algorithms, depending on different notions of
“solving” a problem (i.e., how the algorithm is allowed to err). For BPP, it is not hard to see that
the specific bound of 2/3 does not matter: it can be replaced by any constant in the open interval
(1/2; 1) without changing the class BPP.

1



Theorem 1 ([2, Theorem 3.9]). Let d ≥ 2. In the following, (1) =⇒ (2) =⇒ (3).

(1) BPP = P.

(2) Let S ⊆ [0; 1]d. If S is P-approximable, then S is P-recognizable.

(3) BPP ∩ total = P ∩ total.

Note that (3) does not easily imply (1). For all we know, a problem A in BPP
may not be a restriction of a problem in BPP ∩ total: possibly A is solved only
by an algorithm that, for some inputs outside domA, fails to give any answer with
probability ≥ 2/3. Proving or disproving this implication would be a big leap forward
in complexity theory. We proved a weaker version of it in Theorem 2 below.

What happens if we weaken the above condition (2) by restricting the class of
sets S? Chou and Ko [2, Theorem 3.10] considered the restriction to (d-dimensional)
rectangles, and essentially proved the implication (2) =⇒ (3) of Theorem 2 below,
suggesting a relation to tally problems. A decision problem A is tally (A ∈ tally)
if domA ⊆ {0}∗; it is tally total (A ∈ tally-total) if domA = {0}∗. We show that,
surprisingly, the three conditions are equivalent in this analogue of Theorem 1:

Theorem 2. Let d ≥ 1. The following are equivalent.

(1) BPP ∩ tally = P ∩ tally.

(2) Let S be a rectangle in [0; 1]d. If S is P-approximable, then S is P-recognizable.

(3) BPP ∩ tally-total = P ∩ tally-total.

We can also show that if the analogue of Theorem 2 were to be proved with very
sparse problems instead of tally problems (A is very sparse if domA∩{0, 1}n contains
at most one element for each n ∈ N), then the part (3) =⇒ (1) of Theorem 1 would
follow. In that regard, tally problems seem an interesting subcase to study.

References

[1] V. Brattka, P. Hertling, and K. Weihrauch. A tutorial on computable analysis.
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In this paper, we use non-idempotent typing (also known as quantitative typing) to obtain an exact measure,
for any typable λµ-term t, of the number of reduction steps necessary to normalize t and of the size of the
normal form of t. This statement requires some clarifications, that we are going to give now.

• Lambda-mu calculus, classical logic and control operators: via the Curry-Howard correspondence, the
λ-calculus is a computational interpretation of intuitionistic natural deduction. The λµ is an extension of
the λ-calculus, which a computational interpretation of classical natural deduction. Concretely, classical
features enables control operators, handling continuations and backtracking (i.e. the possibility to come
back in the execution of a program). The λµ-calculus was introduced by Parigot in 92 [7], two years
after Griffin proved that the control operator callcc from Scheme is typable with Peirce Law (((A →
B)→ A)→ A)), which is known to give classical logic.

• Non-idempotent intersection types and quantitativity: non-idempotent intersection types, introduced by
Gardner [4] and de Carvalho [3] have been extensively used to obtain upper bounds for the number of
reduction steps and normal forms. In the wake of Girard’s Linear Logic [5], they forbid duplication
for types, so that A ∧ A 6= A (non-idempotency), where ∧ is the intersection operator. Then, t : A
means that t may be used once as a term of type A and t : A ∧ A that it may be used twice and so on.
Non-idempotent intersection has been used to characterize various notions of normalization (head, weak,
strong, weak head, linear head) while providing quantitative information, e.g. “t normalizes in less than
42 reduction steps”.

• Exact measures: Bernadet and Lengrand [2] used quantitative type to statically characterize the exact
length of maximal reduction sequence in the case of strong normalization. Building on this work, Ac-
cattoli, Lengrand and Kesner [1] developed a general framework encapturing exact lengths of reduction
sequences along with the exact sizes of normal forms for the head, leftmost-outermost and maximal
strategies1. In this framework, a typing judgment has the form Γ `(`,f) t : τ , where, under an assump-
tion called tightness, ` gives the number of reduction steps from t to its normal form t′ and f is the size
of t′.

Normalization and reduction strategies in the λµ-calculus

Furthering the work of Accattoli-Lengrand-Kesner [1], we use non-idempotent intersection and union types that
we introduced in [6] to obtain exact measures for reduction strategies and normal form. Concretely, we present
a unified type system which is parametrized so that it characterizes head, weak and strong normalization. This
system relies on the distinction arrow types typing the abstractions of a redex, which are going to be fired
(including the created redexes), and the arrow types assigned to variables which have a residual in the normal
form. The former are denoted with→ (named dynamic arrows) whereas the latter are denoted with 9 (named
static arrows). For instance, in the λ-calculus, a simple version (without intersection) of our system would give:

Φ1 =

(ax)
x : • `(0,1) x : •

(abs)
∅ `(1,0) (λx.x) : • → • y : • `(0,1) y : •

(app)
y : • `(1,1) (λx.x)y

1Maximal strategy are deterministic reduction strategies which yield a reduction sequence of maximal length for strongly
normalizing terms and an infinite reduction sequence for non strongly normalizing terms
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Φ2 =

(ax)
x : •9 • `(0,1) x : •9 • Ψu . ∅ `(0,f) u : •

(app)
x : •9 • `(0,2+f) xu : •

(tight)
`(0,3+f) λx.x u : •

where Ψu types the normal form u whose size is f . In the Φ1, the abstraction typing the identity λx.x has
dynamic arrow, because the redex (λx.x)y is fired to obtain the normal form y whereas, in Φ2:

• The application xu is not a redex and x is not to be replaced with an abstraction (the subject λx.x u is
a normal form). We may then type x with a static arrow type •9 •.

• The abstraction is not fired either, so that it is typed with a specific rule (tight) which does not conclude
with an arrow. The fact that (tight) does not produce an arrow type indeed prevents the abstraction
to be applied.

For any normalizing term t, the system gives the number of β-reduction steps (intuitionistic steps), the
number of µ-reduction steps (classical steps) and the size of its normal form. Derivations conclude with
judgment of the form Γ `(`,m,f) t : U | ∆, where t is a λµ-term, U a type and Γ and ∆ are contexts (with ∆
pertaining to classical features of the calculus). Under a tightness assumption subsuming that of [1], `, m and
f give the three expected values. This gives our main theorem:

Theorem. There is a type system XS for the λµ-calculus, parametrized with S ∈ {hd, lo, mx} and based on
non-idempotent intersection and union types, coming along with a condition on judgment called tightness such
that:

• t is head normalizing iff it is Xhd-typable.
In that case, there is actually a derivable tight judgment Γ `(`,m,f) t : U | ∆ such that ` is the number
of β-steps and m is the number of µ-steps in the head reduction strategy, and f is the size of the head
normal form of t.

• t is weakly normalizing iff it is Xlo-typable.
In that case, there is actually a derivable tight judgment Γ `(`,m,f) t : U | ∆ such that ` is the number
of β-steps and m is the number of µ-steps in the leftmost-outermost strategy and f is the size of the
normal form of t.

• t is strongly normalizing iff it is Xmx-typable.
In that case, there is actually a derivable tight judgment Γ `(`,m,f) t : U | ∆ such that ` is the number
of β-steps and m is the number of µ-steps2 in the maximal reduction strategy.

We will present a formalism which factorizes most rules, proofs and statements, including that of the above
theorem.
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[3] D. de Carvalho. Sémantique de la logique linéaire et temps de calcul. PhD thesis, Université Aix-Marseille,
Nov. 2007.

[4] P. Gardner. Discovering needed reductions using type theory. In TACS, Sendai, 1994.

[5] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[6] D. Kesner and P. Vial. Types as Resources for Classical Natural Deduction. In FSCD, September 4-7,
Oxford, England, pages 1–15, 2017.

[7] M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduction. In LPAR, pages
190–201, 1992.

2In this case, f is the size of the normal form of t plus the cumulated size of the normal forms that are erased during reduction.

2
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Abstract. This talk presents an entailment checker for a symbolic-heap
system with user-defined inductively defined predicates. Symbolic heap
is a simple form of formulas in the separation logic [4] that is often used
in the context of verifying pointer-manipulating programs [1, 2]. Deci-
sion procedure for the entailment checking problem, which asks validity
of given entailments, is important issue for achieving automated program
verifier based on Hoare logic. The procedure in this talk is based on the
proof-search algorithm given in the authors’ paper [5], which proposes a
complete cyclic-proof system for entailments of the symbolic heap sys-
tem with a class of general inductive predicates. The basic algorithm
is inefficient because of an inference rule, called the split-rule, which
splits the separating conjunctions on both sides of an entailment. The
split-rule requires to explore all possible branches of the spliting cases
in order to obtain completeness. For reducing this inefficiency, this talk
also discusses an idea for finding a correct branch systematically.
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On Cut-Elimination Theorem in Cyclic-Proof
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Abstract. Cyclic-proof systems [1, 2] are logical systems in which the
induction is represented as cyclic structure of proof trees. Cyclic-proof
systems are suitable for automated proof search, and they have been
actively studied for several logics such as the first-order logic, the linear
logic, and the separation logic. However, fundamental properties of the
cyclic-proof systems are not well-known. In this talk, we discuss on the
cut-elimination property for the cyclic-proof systems. In particular, we
prove that the cut-elimination theorem does not hold in the cyclic-proof
system for the separation logic. We expect that the proof idea will be
extended to other logics such as the first-order logic and the logic of
bunched implications, that is, we conjecture the cut-elimination does not
hold in the cyclic-proof systems for these logics. We also have another
(relatively) positive conjecture that any proof with cuts can be translated
to a proof with cuts restricted to only those against induction hypotheses.
We call this property quasi-cut-elimination property.
This work is partially supported by JSPS Core-to-Core Program (A.
Advanced Re- search Networks).
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NETS AND REVERSE MATHEMATICS

SAM SANDERS

Abstract. Nets are generalisations of sequences involving uncountable index

sets; this notion was introduced about a century ago by Moore and Smith.

They also established the generalisation to nets of various basic theorems of
analysis due to Bolzano-Weierstrass, Dini, Arzelà, and others. This paper deals

with the Reverse Mathematics study of these and related theorems about nets.

Perhaps surprisingly, over Kohlenbach’s base theory of higher-order Reverse
Mathematics, the Bolzano-Weierstrass theorem for nets and the unit interval

implies the Heine-Borel theorem for uncountable covers. Hence, the former

theorem is extremely hard to prove (in terms of the usual hierarchy of com-
prehension axioms), but also unifies the concepts of sequential and open-cover

compactness. Similarly, Dini’s theorem for nets is equivalent to the afore-
mentioned Heine-Borel property. Finally, we show that approximating nets

by sequences is hard, but that the notion of continuity associated to nets is

equivalent to ‘epsilon-delta’ continuity without the Axiom of Choice.

Extended abstract

The move to more and and more abstract mathematics can be quite concrete
and specific: E. H. Moore presented a framework called General Analysis at the
1908 ICM in Rome ([2]) that was to be a ‘unifying abstract theory’ for various parts
of analysis. For instance, Moore’s framework captures various limit notions in one
abstract concept ([3]). This theory also included a generalisation of the concept
of sequence beyond countable index sets, nowadays called nets or Moore-Smith
sequences. These were first described in [4] and then formally introduced by Moore
and Smith in [5]. They also established the generalisation to nets of various basic
theorems due to Bolzano-Weierstrass, Dini, and Arzelà ([5, §8-9]). In this paper,
we study theorems about nets in higher-order Reverse Mathematics ([1]).

We show that the Bolzano-Weierstrass theorem for nets implies both the se-
quential and uncountable open-cover compactness of the unit interval, i.e. a nice
unification result. Open-cover compactness is captured by HBU from [6] and ex-
tremely hard to prove: in terms of the usual hierarchy of comprehension axioms, full
second-order arithmetic is needed to prove HBU. We further study the following
theorems generalised to nets: the monotone convergence theorem, Arzelà’s theo-
rem, the monotone convergence theorem for nets of functions, and Dini’s theorem.
In each case, we obtain HBU, or a weakening of the latter from [8] similar to weak
weak König’s lemma; we refer to [9, X.1] for the latter lemma.

The aforementioned results imply that basic results about nets are extremely
hard to prove. It may therefore seem desirable (and in line with the coding prac-
tice of classical Reverse Mathematics) to replace or approximate the limit process

School of Mathematics, University of Leeds & Dept. of Mathematics, TU Darmstadt
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2 NETS AND REVERSE MATHEMATICS

involving nets by a ‘countable’ limit process involving sequences, i.e. if a net con-
verges to some limit, then there should be a sequence in the net that also converges
to the same limit. We show in that (an highly elementary instance of) the latter
‘sub-sequence property’ implies the Lindelöf lemma for R, which is at least1 as hard
to prove as HBU. Finally we establish the local equivalence between ‘epsilon-delta’
continuity and the notion of continuity provided by nets without using the Axiom
of Choice. In other words, while basic properties of nets are hard to prove, nets
can also obviate the need for extra axioms.
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Some formal proofs of isomorphy and discontinuity∗
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In computable analysis a representation for a space X is a partial surjective mapping from
the Baire space NN to X, i.e., a function δ : ⊆ NN → X. A pair X = (X, δX) of a space and
its representation is called a represented space and an element ϕ of Baire space is called name
of x ∈ X if δ(ϕ) = x. Through a representation the notions of computability and continuity
of operators on Baire space can be transfered to any represented space X. Popular topics in
computable analysis are proving mathematical problems computable or, if this is impossible,
classifying their degree of incomputability [BG11, BDBP12, PS18]. A problem that often
appears in such classifications is closed choice, where the task is “given a non-empty closed
set A ∈ A(X) select an element a ∈ A”. Here, a closed subset of a represented space is given
by specifying positive information about its complement. Thus, for most choices of X, this
task is uncomputable and even discontinuous.

More formally, A(X) is defined by use of the space of open subsets O(X), which in
turn (following for instance [Pau16]) can abstractly be described as the space of continuous
functions from X to the Sierpiski space S. Here, S has the two point set {⊥,>} as underlying
set and the total function δS specified by

δS(ϕ) = > ⇐⇒ ∃n ∈ N ϕ(n) 6= 0

as representation. The function space construction from computable analysis [Wei00, Def-
inition 3.3.13] provides a representation [δX → δS] of the continuous functions from X to
S and we call the resulting represented space SX. Next, identify a subset U of X with its
characteristic function

χU : X→ S, χU (x) :=

{
> if x ∈ U,
⊥ otherwise.

Conveniently, χU is continuous if and only if U is open and therefore O(X) can be identified
with SX. Finally, A(X) is represented as the complements of opens, i.e., following the above

δA(X)(ϕ) = A ⇐⇒ [δX → δS](ϕ) = χX\A.

The task of closed choice on X is formalized as finding a realizer (in the sense of function
realizabilty) of the multivalued function CX : ⊆ A(X) ⇒ X defined by CX(A) := A. Or in
words: a is an acceptable return value of CX on input A if and only if a is an element of A.
Note that this in particular means that the domain of CX are the non-empty subsets of X
and that a realizer can behave arbitrarily outside of the domain, i.e., no solution needs to be
produced in this case.

The function space construction is quite complicated and for concrete spaces it is often
possible to use simpler representations. For instance, one may make use of the fact that
there exist infinite products and indeed

∏
n∈N X is isomorphic to the function space XN.

∗This work was supported by JSPS KAKENHI Grant Number JP18J10407, by the Japan Society for the
Promotion of Science (JSPS), Core-to-Core Program (A. Advanced Research Networks), by the ANR project
FastRelax (ANR-14-CE25-0018-01) of the French National Agency for Research and by EU-MSCA-RISE
project 731143 Computing with Infinite Data (CID).
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Thus O(N) ∼=
∏

i∈N S, where the right hand side uses the infinite tupling on Baire space as
replacement for the more complicated function space construction. An even more concrete
description of O(N) can be obtained by using the enumeration representation, where a name
of an open set enumerates its elements. The representation of the corresponding concrete
space AN of the closed subsets of the natural numbers is given by

δAN(ϕ) = N \ {n ∈ N | ∃m ∈ N, ϕ(m) = n+ 1}.

That is, the information a name specifies about a closed set is an enumeration of its comple-
ment.

We formalized the proofs A(N) ' AN and also the isomorpy of the concrete and abstract
spaces of open sets. Some of the steps in the proof are carried out in more generality than
needed, for instance we prove XN ∼=

∏
i∈N X and O(X) ∼= A(X) (via taking the complement

and realized by the identity) for an arbitrary represented spaces. The formalization is carried
out in coqrep [Ste18], a coq library for computable analysis which is being developed by one
of the authors. As an application we formalized a proof that closed choice on the naturals as
function from AN to N is discontionuous and used the isomorphisms to conclude that the same
is true for CN in its original definition using A(N) as source space. Our proofs of isomorphy
proceed by specifying a subset of the needed algorithms concretely, proving them correct and
obtaining the remaining translations through compositionality. In particular we retain full
executability even though some of our correctness proofs use classical reasoning for conve-
nience. For obvious reasons the discontinuity statements are exempt from the executability
claims.

The results themselves are well known and were picked for having fairly straight forward
proofs while at the same time being well suited as examples for full formal proofs in the library
that require some of the more advanced features it offers like the function space and infinite
product constructions. During our work we also suplemented some previously missing parts
to the library, for instance a full justification of the infinite product construction by means
of a proof of the corresponding universal property. The whole project has meanwhile been
made part of the coqrep library.
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Separation logic is successful for software verification in both theory and
practice [1]. Decision procedure for symbolic heaps is one of the key issues.
This paper proposes a cyclic proof system [2] for symbolic heaps with some
class of inductive definitions, called cone inductive definitions [3], and shows its
soundness and completeness. The decision procedure for entailments of symbolic
heaps with cone inductive definitions is also given. The class of cone inductive
definitions is useful since it contains skip lists, doubly linked lists, and lists
of trees. Decidability for entailments of symbolic heaps with general form of
inductive definitions is an important question. Completeness of cyclic proof
systems is also an important question. The results of this paper answer both
questions.
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Infinite Adequacy Theorem through Coinductive Definitions
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This is a joint work with Ulrich Berger.
We present adequacy theorem for an untyped language with full recursion and con-

structors for making pairs. In such a language, one can express infinite terms some of
whose parts are ⊥ (i.e., undefined). For example an infinite list that contains a ⊥ can be
represented. Our adequacy theorem is stated as follows.

Suppose that M is a closed term whose meaning [[M ]] is composed only with
constructors and ⊥. Then, as the computation of M proceeds, we have a
sequence of constructor terms whose limit is the infinite term [[M ]].

We are developing a logical system IFP (Infinite FixedPoint Logic), which is an
extension of first-order logic with inductve and coinductive definitions. One can extract
from a proof in IFP a program in this language. In programs, it may be the case
that some part of the data cannot be specified and therefore should be left as ⊥. For
example, infinite Gray code is a representation of real numbers that takes advantage of
this partiality [2]. With IFP, one can logically express such a specification and extract
a program that produces a partially specified data. Therefore, in order for our program
extraction system to be sound, it is required that a program really computes the data
to the extent that is specified by the logic. This adequacy theorem shows this kind of
soundness.

As a part of the proof, we used the adequacy theorem for finite terms given in [1],
which requires a second-order argument that is beyond the power of IFP. However, we did
other part of the proof in the way that can be formalized in IFP; we defined the required
domain-theoretic notions and defined big-step and small-step reduction and proved their
relations through induction and coinduction. In this sense, this can be seen as a working
example of IFP proofs.
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structive analysis. Jour. Universal Comput. Sci., 16(18):2535–2555, 2010.
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”First-order parts” of Weihrauch degrees

Keita Yokoyama

Japan Advanced Institute of Science and Technology,
1-1 Asahidai, Nomi, Ishikawa 923-1292 Japan,

y-keita@jaist.ac.jp

The Weihracuch degree of a binary relation on Baire space measures the
power of uniform computation of a problem defined on Baire space. In the recent
studies of Weihrauch degrees, it is seen that its structure resembles the structure
of second-order arithmetic in the sense of reverse mathematics. In this study,
we will introduce the ”first-order part” of a Weihrauch degree by focusing on
numerical consequences, and try to measure the first-order strength of degrees.
Then we see that the first-order parts of degrees of arithmetical problems form
a hierarchy corresponding to Kirby-Paris hierarchy of first-order arithmetic, and
those can be classified with their first-order strength. This is a joint work with
Damir Dzhafarov and Reed Solomon.


